Enantioselective Ru-Mediated Synthesis of (-)-Indolizidine 223AB

Douglass **F.** Taber,* P. Bruce Deker, and Lee J. Silverberg

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Received April 23, 1992

Triphenylphosphine/CCl,-mediated cyclization of amino alcohol **17** proceeded smoothly, with *single inversion,* to provide (-)-indolizidine **223AB 4.** *Amino* alcohol **17** was prepared by thermolysis of azide **16,** followed by DIBAL reduction of the intermediate imine. Symchiral aldehyde **12** and phosphonium salt **15,** precursors to **16,** were prepared by BINAP-Ru*-mediated hydrogenation of the corresponding β -keto esters. A simplified procedure allows this hydrogenation to be carried out in a Parr shaker, at 80 °C and 50 psig of H₂.

The alkaloids exuded by the skin of the Central American frog species of the genus *Dendrobates* have been under intensive investigation for the last 20 years.¹ though this mixture, in contrast to that of the related *Phyllobates,* was not **used as** an arrow poison, many of the constituent alkaloids, including pumiliotoxin A **(l),** gephyrotoxin **(2), histrionicotoxin (3),** and indolizidine 223AB **(4),** show pronounced neuromuscular activity.

We report an efficient strategy for the assembly of (-)-indolizidine 223AB **(4),** with control of both relative and absolute configuration. The key to our approach is the enantioselective $RuCl₂/BINAP-mediated reduction^{2,3}$ of @-keto esters.

Background

When indolizidine 223AB **(4)** was first **isolated,'** only the gross structure **was** deduced. Elucidation of the relative and absolute configuration depended on an intense series of synthetic investigations, in the course of which **all** four possible diastereomers were prepared. $4-6$

Previous syntheses of **4** have been either cumbersome or nonselective, hindering further investigation in this

0022-326319211957-5990\$03.00/0 *0* **1992** American Chemical Society

⁽¹⁾ For a detailed account of the isolation and structure of the *Dendrobates* alkaloids, including indolizidine **223AB,** see: Daly, **J.** W.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives;
Pelletier, S. W., Ed.; Wiley: New York, 1986; Vol. 4, Chapter 1, pp 1-274.
(2) For the original report of BINAP/Ru-mediated reduction of β -keto

esters, *see:* **(a)** Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, A. J. *Am. Chem. SOC.* **1987,109,5856.** For later references, see: (b) Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo,
N.; Kumobayashi, H.; Akutagawa, A.; Ohta, T.; Takaya, H.; Noyori, R.
J. Am. Chem. Soc. 1988, 110, 629. (c) Kitamura, M.; Ohkuma, T.; Ta-
kaya, H.; N Kitamura, M.; Ohkuma, T.; Noyori, R*. Tetrahedron Lett.* **1988, 29, 6327.**
(e) Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.;
Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. *Am. Chem. SOC.* **1989,111,9134.**

⁽³⁾ For an improved procedure for BINAP/Ru-mediated reduction of β -keto esters, see: (a) Taber, D. F.; Silverberg, L. J. Tetrahedron Lett.
1991, 32, 4227. (b) Taber, D. F.; Silverberg, L. J.; Robinson, E. D. J. Am. *Chem. SOC.* **1991, 113, 6639.** (c) For related work, see: Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. *Tetrahedron Lett.* **1991,32,4163.** (d) **Kitamura, M.;** Tokunaga, M.; Noyori, R. *J. Org. Chem.* **1992,57,4053.**

⁽⁴⁾ For syntheses of racemic indolizidine 223AB, see: (a) Macdonald, T. L. J. *Org. Chem.* **1980,45, 193.** (b) Spande, T. F.; Daly, J. W.; Tsai, Y.-M.; Macdonald, T. L. Experientia 1981, 37, 1242. (c) Iida, H.; Watanabe, Y.; Kibayashi, C. J. Am. Chem. Soc. 1985, 107, 5534. (d) Broka, C. A.; Eng, K. K. J. Org. Chem. 1986, 51, 5043. (e) Brandi, A.; Cordero, F.; Querc H.; Kibayashi, C. *J. Org. Chem.* **1989,** *54,* **4088.**

series. We envisioned a simple synthetic approach to **4,** based on cyclization of **7** and subsequent reduction of the intermediate imine7 (Scheme I). We now report the successful execution of this approach, which is especially noteworthy in that it proceeds without resort to any functional-group protection.

A Simplified Procedure for the Enantioselective Hydrogenation of β **-Keto Esters.** The key to this approach to **4** was the enantioselective preparation of aldehyde **12** and phosphonium salt **15.** We envisioned that each (Scheme I and Scheme 11) could be prepared from a precursor symchiral⁸ β -hydroxy ester.

Originally, we had projected that the β -hydroxy esters would be prepared by the method we had developed⁹ for chiral auxiliary-directed reduction. *As* this project commenced, however, the Nagoya and Takasago groups, working in collaboration, reported² that a solution prepared by treating BINAP ruthenium diacetate with methanolic HCl would catalyze the reduction of β -keto ester 5 to 6 with excellent turnover and stunning enantioselectivity (99:1). There were, however, two practical difficulties with this procedure: the ruthenium complex must be prepared (two steps) and stored under controlled atmosphere conditions (Scblenkware or glovebox). Further, the hydrogenations were effected at 1500 psi H_2 , a pressure not routinely available to the organic synthesis chemist.

We have found3 that **direct** combination of commercially available BINAP and $(RuCl_2$ -cyclooctadiene)_n in the presence of triethylamine, followed by heating, leads to a very active catalyst.¹⁰ Further, we have found that neither lowering the hydrogen overpressure nor raising the temperature of the reaction adversely affects the enantiomeric excess of the product. Thus, the hydrogenation can be carried out in a conventional Parr shaker $1^{1,12}$ using catalyst

prepared in a single step from commercial materials. It is particularly important that under these conditions, in contrast to those previously reported? an isolated alkene $survives.³$

Preparation of **Aldehyde 12.** *As* we have previously reported,^{3a} hydrogenation of β -keto ester 7 (Scheme I) proceeded smoothly to give 8. LiAlH₄ reduction then delivered diol **9.** Coupling of the derived monotosylate with ally lmagnesium chloride^{7b} gave the secondary alcohol, which was most efficiently isolated **as** the derived meaylate **10.** Azide **11** is prone **to** cyclization, but could be stored at 0 "C for a few days, if desired, prior to ozonolysis to aldehyde **12.**

Preparation of Phosphonium Salt 15. LiAlH₄ reduction of **6** (Scheme 11) provided diol **7.** Bromide **14** was prepared by exposure of the primary monotosylate of **13** to an excess of MgBr₂ (prepared from Mg turnings and allyl bromide) in THF at reflux. Heating of **14** with triphenylphosphine in *dry* THF gave the hygroscopic phosphonium salt **15,** which was purified to a *dry* white powder by silica gel chromatography followed by trituration with diethyl ether.

Synthesis of Indolizidine 223AB. Wittig condensation13 of phosphonium salt **15** (Scheme III) with aldehyde **12** provided **16 as** a mixture of geometric isomers. This mixture was of no consequence, **as** both the *2* and E alkenes participated efficiently in the subsequent dipolar addition/fiagmentation. **Thus,** thermolysis of the coupled alkene followed by selective reduction^{7,14} proceeded smoothly to give the cis-dialkylpiperidine **17.**

With **17** in hand, we were prepared to investigate cyclodehydration to 4. Previously,⁴ this had been effected by a three-step sequence of N-acylation, mesylation, and N-deacylation with concomitant cyclization. There was literature precedent for alcohol activation in the presence of an amine, $15-17$ but the stereochemical course of cyclization with a secondary alcohol had not been investigated.¹⁸ In fact, we have found that the cyclization proceeds with *single* inversion to give the desired indolizidine **223AB**

⁽⁵⁾ For an enantioselective synthesis of indoliiidine **223AB,** see: Royer, J.; Huason, H. P. *Tetrahedron Lett.* **1985,26,1515.**

⁽⁶⁾ For enantiodective routes to related indolizidines, **see:** (a) Nagao, Y.; Dai, W.-M.; Chiai, M.; Tsukagoshi, S.; Fujita, E. J. Am. Chem. Soc. **1988,110,289.** (b) **Yamazaki,** M.; Kibayashi, C. *Tetrahedron Lett.* **1988, 29,5767.** (c) Smith, **A.** L.; Williams, S. F.; Holmes, **A.** B.; Hughes, L. L.; 25, 3101: (U. Suithenbank, C. J. Am. Chem. Soc. 1988, 110, 8896. (d)
Lidert, Z.; Swithenbank, C. J. Am. Chem. Soc. 1988, 110, 8896. (d)
Yamazaki, M.; Kibayashi, C. J. Am. Chem. Soc. 1989, 111, 1396. (e)
Nagao, Y.; Dai, W.-*Chem.* **1990,55,1148. (f)** Polniaszek, **R.** P.; Belmont, S. E. J. *Org. Chem.* **1990,55,4688.** (g) Holmes, **A.** B.; Smith, A. L.; Williams, S. W.; Hughes, L. R.; Lidert, **Z.;** Swithenbank, C. *J. Org. Chem.* **1991,56, 1393.**

⁽⁷⁾ (a) For the fit report of cyclic imine construction by intramolecular azide cycloaddition, **see:** Logothetis, A. L. *J. Am. Chem.* **SOC. 1965, 85,749.** For applications **to** natural product synthesis, see: (b) Taber, D. F.; Deker, P. B.; Fales, H. M.; Jones, T. H.; Lloyd, H. **A.** J. *Org. Chem.* **1988,53,2968.** (c) Bennett, R. B., III; Choi, J. R.; Montgomery, W. D.; Cha, J. K. J. *Am. Chem.* SOC. **1989,111,2581.** (d) Hudlicky, T.; Seoane, G.; Lovelace, T. C. J. *Org. Chem.* **1988,53, 2094.** (e) Pearson, W. H. *Tetrahedron Lett.* **1985,26,3527.**

⁽⁸⁾ For the use of "symchiral" to mean "having high enantiomeric
purity", see: (a) Taber, D. F. Chem. Eng. News Aug 19, 1991, 5. (b)
Magar, S. S.; Fuchs, P. L. Tetrahedron Lett. 1992, 33, 745.
(9) Taber, D. F.; Deker, P.

^{109,7488.}

⁽IO) We would like to thank Dr. S. Akutagawa and co-workers of Takasago International Corp., Tokyo, for suggesting this catalyst preparation.

⁽¹¹⁾ The Parr shaker bottle **was** modified by replacing the **usual** rubber stopper, not compatible with the ruthenium catalyst, with a **24/40** a 24/40 male ground glass straight gas inlet tube having a threaded plastic retaining ring and an O-ring seal. Parr bottles modified in this way are available from Mr. Douglas Nixon of this department.

⁽¹²⁾ Heating of the Parr bottle was effected with a Parr bottle heating mantle, available from Fisher Scientific.

⁽¹³⁾ Maryanoff, B. **E.;** Reitr, A. B.; Duhl-Emsweiler, B. A. *J. Am. Chem.* SOC. **1985,107, 218.**

⁽¹⁴⁾ **Maruoka, K.; Miyazaki, T.; Ando, M.; Matsumura, Y.; Sakane, S.;** Hattori, K.; Yamamoto, H. *J. Am. Chem. Soc.* 1983, 105, 2831.

⁽¹⁵⁾ Stoilova, V.; Trifonov, L. S.; Orahovata, A. S. *Synthesis* **1979,2, 105.**

⁽¹⁶⁾ Sonnet, P. E.; Oliver, J. E. J. *Heterocycl. Chem.* **1975,12, 289. (17) Okada,** I.; Ichimura, K.; Sudo, R. *Bull. Chem.* **SOC.** *Jpn.* **1970,43, 1185.**

ditions, with clean inversion, was reported after the initial phase of this work was completed: Bernota, R. C. *Tetrahedron Lett.* 1990, 31, 469.

(4), $[\alpha]_D = -102^\circ$ (lit.⁵ $[\alpha]_D - 101^\circ$), identical ⁽¹H, ¹³C *NMR*, as a colorless oil. A middle cut was distilled bulb-to-bulb (bath TLC) with natural material.

Conclusion

The modification³ of the Noyori-Akutagawa hydrogenation2 that we have developed makes symchiral secondary alcohols such **as 9** and **13** very easy to prepare. The strategies outlined here for the efficient coupling of these fragments then allow the convergent assembly of longer acyclic intermediates such **as 16.** This approach could be used **to** selectively prepare any of the eight diastereomers of **4,** with control of both relative and absolute configuration.

Experimental Section

General. ¹H and ¹³C NMR spectra were obtained as solutions in CDC13. Carbon signals were assigned by an INEPT pulse sequence, $u =$ methylene or quaternary carbon, $d =$ methyl or methine. The infrared (IR) spectra were obtained neat or **as** solutions in CCl₄ and are reported in cm⁻¹. Substances for which C,H **analysis** are not reported were purified **as** specified and gave spectroscopic data consistent with being **>95%** of the assigned structure. Optical rotations were measured **as** solutions, **1.0 g/100** mL in absolute ethanol unless otherwise specified. Organic chemicals were purchased from Aldrich Chemical Co. THF and $Et₂O$ were distilled from sodium/benzophenone. The solvent mixtures used for chromatography are volume/volume mixtures. R_f values indicated refer to thin-layer chromatography on Analtech 2.5×10 cm, 250 - μ m analytical plates coated with silica gel GF. Column chromatography was carried out with TLC-mesh silica gel, using the procedure we have described.¹⁹ Unless otherwise specified, all reactions were carried out in flame-dried glassware under an atmosphere of N_2 .

Catalyst Preparation. All manipulations were carried out in an N_2 atmosphere. Following the procedure we have developed,³ 39 mg of $(RuCl_2$ -cyclooctadiene)_n, 100 mg of (S) - $(-)$ -2, 2'-bis(di**phenyy1phosphino)-1,l'-binaphthyl, 4.5 mL** of toluene, and **0.0275** mL of triethylamine were sealed in a 5-mL reactivial. Stirring was continued at **140** 'C until the solution was a clear homogeneous red **(24** h). Solvent was removed in vacuo, and the reaidue was taken up in **10** mL of THF. The resultant orange-brown suspension was divided into five equal portions, each of which was stored in a stoppered vial under N_2 until use.

Methyl (S)-3-Hydroxyheptanoate **(6)** and Methyl (S)-3- Hydroxyhexanoate **(8).** Keto ester **5** (5.0 g, **35.2** mmol), methanol **(20 mL),** catalyst **as** prepared above **(2** mL; from **20 mg** of BINAP), and Dowex-50 resin **(350** mg; washed with water, methanol, diethyl ether, and methanol and then preased to remove most of the methanol) were combined in a modified" **Parr** bottle. Hydrogenation was carried out at 50 psig of H_2 and 80 °C for 5.5 **h** After filtration through *glans* wool and evaporation, the residue was distilled bulb-to-bulb at 0.5 mm (bath = **85** 'C) **to** give **6 as** a colorless oil (4.57 g, 31.7 mmol, 90%): $[\alpha]_D$ 1.85°; ¹H NMR (δ) **4.01** (m, **1** H), **3.71 (a, 3** H), **3.1** (bs, **l), 2.362.56** (m, **2** H), **1.3-1.55** $(m, 6 H)$, 0.91 $(t, J = 6.9 Hz, 3 H)$; ¹³C NMR (*b*) 173.3, 67.9, 51.6, **41.1,36.2,27.5,22.5,13.9.** IR (cm-') **3436** (b), **2957, 2931,2864, 1742, 1437, 1291,1171,1125, 1045,872,733.**

Methyl (S)-3-hydroxyhexanoate **8** was prepared analogously: TLC R_f (20% ethyl acetate/petroleum ether) = 0.25; α _D 4.6° **(c 1.0,** ethanol); 'H NMR (6) **4.01** (m, **1** H), **3.72 (a, 3** H), **2.90 (bs, ¹**H), **2.36-2.56** (m, **2** H), **1.3-1.55** (m, **4** H), **0.94** (t, J ⁼**7.0** Hz, **³**H); **l% NMR** (6) **173.3,67.7,51.6,41.1,38.6, 18.6,13.8; IR** (cm-') **3600-3200** (b), **2959-2875** (b), **2741, 2031, 1735, 1652.**

(S)-(+)-1,3-Hexanediol(9). Methyl (S)-%hydroxyhexanoate (8) **(1.02** g, **6.96** "01) in **THF (35 mL, 0.2 M)** was added dropwise with stirring to LiAlH4 **(0.528** g, **2** equiv) in **100** mL of THF at 0 'C. After **1** h of warming the mixture was cooled again in ice and quenched by sequential addition of water **(1.3** mL), **10%** aqueous NaOH **(1.3 mL),** and water **(2.6** mL). The resultant salts were washed with ether, and the combined filtrates were dried (Na2S04) and chromatographed to give **9 (0.557 18** g, **68%** yield)

as a colorless oil. A middle cut was distilled bulb-to-bulb (bath = **100** °C (0.5 **mm**)): α **J**_D 11.4° (c 3.2, ethanol); ¹H NMR (8) 0.94 (t, **J** = **6.7** Hz, **3** H), **1.24-1.54** (m, **4** H), **1.54-1.80** (m, **2** H), **3.65-3.95** (br m, **3** H), **445** (br **8,** dilution dependent, **1** H), **4.67** (br s, dilution dependent, 1 H); ¹³C NMR (δ) d: 13.9, 70.8; u: 18.6, **38.3,39.7,60.7; IR** *(cm-')* **3507,3440,3286,3169,2960,2892,2843, 1471, 1434, 1089, 1053, 1022; MS (CH₄, CI;** *m/z***) 119** ((M + H)⁺, 11), 117 (1), 101 ((M + H - H₂O)⁺, 18), 99 (3), 83 ((M + H **ll**₂O⁺, **100**), **81** (2); **E1** (M⁺ - H₂O) **100.0910**, calcd **100.0888**.

(5)-&Nonen-kyl Methanesulfonate (10). Diol **9 (9.14,72.7** mmol) in CH_2Cl_2 (75 mL) at 0 °C was treated sequentially with pyridine **(5.75** g, **1.0** equiv) and triethylamine **(7.34** g, **1.0** equiv), followed by p-toluenesulfonyl chloride $(6 \times 2.78 \text{ g}, 0.2 \text{ equity each})$ time) over **1.5** h. After an additional 0.5 h, the reaction mixture was partioned between brine and CH₂Cl₂. The combined organic extract was dried (Na_2SO_4) , filtered, and concentrated in vacuo. The residual oil was chromatographed to give a mixture **(6.90** g) containing some of the desired primary monotosylate, followed by the pure primary monotosylate as a colorless oil (14.19 g) : TLC R_f (30% EtOAc/pentane) = 0.58; ¹H NMR (δ) 0.88 (t, $J = 6.8$ **Hz**, 3 H), 1.10-1.50 (m, 4 H), 1.62 (m, 1 H), 1.80 (m, 1 H), 2.28 **(a,** dilution dependent, **1** H), **2.44 (e, 3** H), **3.69** (bra, **1** H), **4.02-4.35** (m, **2** H), **7.34** (d, J ⁼**8.0** *Hz,* **2** H), **7.78** (d, J ⁼8.0 Hz, **2** H); I3C **NMR** (δ) d: 14.0, 21.6, 67.6, 127.9, 130.0; u: 18.7, 36.3, 39.7, 68.1, **133.1, 144.9;** IR (cm-') **3619,3580,3451,2952,2933,2851,1365, 1180, 1095, 965; MS (CH₄, CI;** m/z **) 275 (4), 274 (10), 273 ((M +** H)⁺, 60), 257 (3), 256 (6), 255 (42), 173 (3), 101 (2), 83 (100).

The pure primary monotosylate **(13.32** g, **22.75** mmol) in **50** mL of THF was added all at once to a stirred solution of allylmagnesium chloride $(2 M in THF, 245 mL, 489 mmol)$. After 20 **min,** the mixture was warmed to **reflux** for **3** h and then partitioned between 10% aqueous HCl and Et₂O. In a similar manner 6.49 g of the mixture containing primary monotosylate was treated with allylmagnesium chloride (114 mL, 228 mmol). The combined organic phases from both runs were washed with brine, dried $(Na₂SO₄)$, concentrated, and chromatographed to give a mixture *(5.00* g) containing the alkenyl alcohol, followed by pure alkenyl alcohol (7.15 g) as a faintly yellow oil; **TLC** *R_f* (20% Et_2O /pentane) = 0.42. Bulb-to-bulb distillation of 0.0821 **g** (bath \approx 75 °C, 0.5 mmHg) gave a clear oil: 0.0816 g; $[\alpha]_D$ 1.06° (c 2.1, EtOH); ¹H NMR (6) **0.90** (t, J ⁼**6.7** Hz, **3** H), **1.25-1.60** (m, **8** H), **1.95-2.15** (m, **2** H), **2.20 (a,** dilution dependent, **1** H), **3.59** (br **a, 1** H), **4.90-5.07** (m, **2** H), **5.70-5.90** (m, **1** H); lac **NMR** (6) d **14.1,71.4, 138.8;** u: **18.9, 25.0,33.8, 36.9, 39.7, 114.5; IR** (cm-') **3628, 3375, 2945,2930,2907,2855,1462,1375; MS** (CHI, CI; *m/z)* **143 ((M 111 (3), 109** *(5),* **97 (lo), 83 (100).** $+ H$ ⁺, 17), 141 (5), 126 (6), 125 $((M + H - H₂O)⁺$, 61), 123 (15),

Methanesulfonyl chloride **(7.62** mL, **98.5** mmol) followed by Et₃N (20.60 mL, 147.7 mmol) were added dropwise to the alkenyl alcohol **(7.00** g, **49.2** "01) in **dry** EhO **(100** mL) at **0** 'C. After **2** h the mixture was partitioned between brine and **EhO.** In a like manner **4.90** g of the crude fraction containing the alkenyl alcohol was treated with methanesulfonyl chloride **(5.44 mL, 70.3** mmol). The combined organic phases from both runs were washed with brine, dried $(Na₂SO₄)$, concentrated, and chromatographed to give mesylate 10 **as** a clear **oil: 11.85** g **(80%** from diol); TLC R_f (20% Et₂O/pentane) = 0.49; ¹H NMR (δ) 0.95 (t, $J = 6.8$ Hz, **¹**H), **1.30-1.60** (m, **6** H), **1.60-1.80** (m, **4** H), **2.09** (q, J ⁼**6.4** Hz, **2** H), **2.98 (a, 3** H), **4.73** (m, **1** H), **4.90-5.10** (m, **2** H), **5.70-5.87** (m, 1 H); ¹³C NMR (δ) d: 13.6, 38.5, 83.5, 137.8; u: 18.1, 23.9, **33.1,33.6,36.4,114.9; IR** (cm-') **3090,2961,2940,2922,1374,1366, 1346,1332,1181,968,896; MS** (NH4, CI; *m/z)* **255 (2), 238 ((M** + NH4)+, **loo), 223 (l), 158 (l), 142 (2), 131 (l), 114 (2), 95 (1).**

(R)-6-Azido-1-nonene (11). NaN₃ (17.48 g, 268.7 mmol) was added to mesylate 10 (11.85 g, 53.78 mmol) in dry HMPA (27.0 mL). After **2** h at **40** 'C the mixture was partitioned between brine and Et₂O. The combined organic phases were dried $(Na₂SO₄)$, concentrated, and chromatographed to give azide 11 **as** a faintly green-yellow oil: **8.88** g **(99%);** TLC *Rf* **(10%** Et₂O/pentane) = 0.91 ; ¹H NMR (δ) 0.93 (t, $J = 7.1$ Hz, 3 H), **1.30-1.65** (m, **8** H), **2.08** (m, **2** H), **3.24** (bra, **1** H), **4.92-5.07** (m, 2^H), $5.70-5.90$ (m, 1^H); ¹³C NMR (δ) d: 13.9, 62.8, 138.3; u: 19.4, **25.4,33.5,33.8,36.6,115.0; IR** (cm-') **3070,2954,2920,2850,2090, 96 (8). 1482,1461,1439;** MS (CH4, CI; *m/z)* **180 (7), 168** ((M + H)+, **24), 140** $((M - N_2 + H)^+$, **100**), **139** $((M - N_2)^+$, **21**), **138** (25), **124** (7),

⁽¹⁹⁾ Taber, D. F. *J. Org. Chem.* **1982,** *47,* **1351.**

(R)-(+)-&Azidooctanal **(12).** Azide **11 (8.88 g, 53.10** mmol) was subjected to ozonolysis in four aliquota of **2.22** g each. Thus, alkenyl azide **(2.22** g, **13.28** mol) in MeOH **(-130 d)** was chilled to -78 °C, and O_3 was bubbled through the rapidly stirred mixture for 12.5 min (after 12 min a slight purple haze due to excess O_3 was detectable). Excess O_3 was purged from the -78 °C solution with O_2 (2 min) and N_2 (3 min). The reaction mixture, still at -78 °C, was charged with dimethyl sulfide $(\approx 20 \text{ mL})$ and allowed to warm overnight. The four aliquota were combined, concentrated in vacuo $(35 °C, H₂O$ aspirator), and chromatographed to give 12 as a slightly yellow oil: 7.08 g (79%) ; TLC R_f $(10\%$ $Et₂O/pentane) = 0.28$. Bulb-to-bulb distillation of 0.865 g (\approx 110 $\textdegree C$, 0.5 mmHg) gave a clear oil: 0.848 g (62% from the diol); α _D **4.85O (c 3.26,** EtOH). Long-term storage of **this** material requires refrigeration and a dry atmosphere of N₂. Storage as a mixture with dimethyl sulfide is effective as well: ¹H NMR (δ) 0.92 (t, **J** = **6.5 Hz, 3** H), **1.30-1.60** (m, **6** H), **1.60-1.90** (m, **2** H), **2.49** (t, $J = 6.6$ Hz, 2 H), $3.15-3.35$ (m, 1 H), 9.77 (s, 1 H); ¹³C NMR (δ) d: **13.9,62.5,201.9;** u: **18.7, 19.3,33.7,36.5,43.5;** IR **(an-') 2972, 2961,2941,2925,2874,2100,1730,1713,1253; MS** *(m/z)* **167** (M+, **(65), 101 (40). 2), 156 (52), 140 (78), 127** ((M - N&+, **91), 124** *(50),* **112 (loo), 109**

(S)-(+)-l,3-Heptanediol(l3). Methyl 3-hydroxyheptanoate **(6) (1.00 g, 6.24** mmol) in THF **(11.2** mL) was added dropwise to *LAW4* **(0.71** g, **18.7** mol) in **THF (20 mL)** at **0** OC. After being warmed for 1 h, the mixture was cooled to 0 °C and quenched sequentially with water **(0.71 mL), 10%** aqueous NaOH **(0.71 mL),** and water **(1.42** mL). The **salta** were removed by vacuum filtration and rinsed with ether. The combined filtrates were dried (Na₂SO₄) and chromatographed and then distilled bulb-to-bulb (bath $= 120$ °C, 0.5 mm) to give 13 as a viscous colorless oil $(0.757 \text{ g}, 5.74 \text{ mmol})$. **92%** yield): *[a]~* **9.6'** (c **5.0,** EtOH); 'H NMR **(6) 0.91** (t, **J** = **6.9** Hz, **3** H), **1.12-1.50** (m, **6** H), **1.50-1.83** (m, **2** H), **3.78** (m, **3 H), 3.90-4.40** (br 8, br e overlapping and concentration dependent, **2** H); 13C NMR (6) d: **14.1, 71.2;** u: **22.7, 27.8, 37.4, 38.5, 60.9;** $CI; m/z$) **133** ((M + H)⁺, 8), **115** (M + H - H₂O)⁺, 22), 97 ((M) **IR** (~m-') **3620,3425,2927,2850,1465,1430,1376,1065; MS** (CHI, $+ H - 2H₂O$ ⁺, 100), 85 (3).

(S)-(+)-1-Bromo-3-heptanol (14). Diol 13 (6.85 g, 51.8 mmol) in CH₂Cl₂ (50 mL) in an ice/water bath was treated sequentially with pyridine **(4.1** g, **1.0** equiv) and triethylamine **(5.23** g, **1.0** equiv), followed by p-toluenesulfonyl chloride $(6 \times 1.98 \text{ g}, 0.2 \text{ equity})$ each time) over **1.5** h. After **an** additional **0.5** h, the reaction mixture was partitioned between brine and CH_2Cl_2 . The combined organic extract was dried $(Na₂SO₄)$, filtered, concentrated, and chromatographed to give the desired primary monotosylate **as** a faintly yellow oil: **10.29** g, plus an additional **1.82** g from rechromatography of mixed fractions $(t \text{otal} = 82\%)$; TLC R_f (40%) EtOAc/hexane) = 0.58 ; ¹H NMR (δ) 0.88 (t, $J = 6.7$ Hz, 3 H), **1.10-1.50** (m, **6** H), **1.64** (m, **1** H), **1.84** (m, **1** HI, **1.99** (br *8,* dilution dependent **1** H), **2.45** *(8,* **3** H), **3.71** (br **s, 1** H), **4.12** (m, **1** H), **4.25** (m, **1** H), **7.35** (d, J ⁼**8.0 Hz, 2** H), **7.79** (d, J ⁼**8.0** Hz, **2** H); 13C **NMR** (6) d: **14.1,21.7,67.9,128.0,130.0;** u: **22.7,27.8, 36.4,37.3, 68.1, 133.1, 145.0;** IR (cm-') **3620,3582,3465, 2955, 2920, 2851,** ((M + H)+, **54), 270 (4), 269 (22), 229 (2), 213 (2), 201 (ll), 173 (81, 97 (100).** 1374, 1185, 1090, 974; **MS** (CH₄, CI; m/z) 289 (4), 288 (9), 287

 Mg turnings $(5.24 g, 216 mmol)$ and $I₂$ (catalytic amount) were heated with a flame under an N_2 atmosphere and the purple I_2 vapor removed after 5 min by a flow of N₂. Dry THF (180 mL) was added followed by dropwise addition of allyl bromide **(38.0** mL, 442 mmol) so as to maintain a gentle reflux (typically additional allyl bromide was needed to consume **all** of the magnesium). The resultant MgBr₂ solution was cooled to rt. The primary monotosylate **(10.29 g, 35.93** "01) in *dry* THF **(180** mL) was added dropwise over **15** min. The mixture was stirred **1** h at **rt** and then warmed to reflux for **1** h. After being cooled to rt, the mixture was partitioned between brine and Et₂O. The combined organic extracts were dried (Na₂SO₄), concentrated, and chromatographed to give **6.7 g** of **14 as** a colorless oil **(65%);** TLC R_f (Et₂O/pentane) = 0.16. Bulb-to-bulb distillation of 0.236 **g** (\approx 60[']°C, 0.5 mmHg) gave 0.230 **g** of a colorless oil: $[a]_D$ 31.6° *(c* **7.84,** EtOH); 'H NMR *(6)* **0.94** (t, **J** = **6.7** Hz, **3** H), **1.15-1.60** (m, **6** H), **1.82-2.08** (m, **2** H), **3.08** (br **s, 1** H), **3.50-3.59** (m, **2** H), **3.71-3.85** (br m, **1** H); **13C** NMR **(6)** d: **14.0, 69.6;** u: **22.6, 27.7, 30.6,37.1,40.1; IR** *(cm-')* **3366,2973,2905, 2861, 1465, 1262, 1151,**

1120, 1046, 911; MS (CH₄, CI; m/z **) 195 ((M + H)**⁺, **1)**, **180 (2)**, 179 (30), 177 (30), 137 (4), 115 (4), 97 (100).

((S)-3-Hydroxyhept-l-yl)triphenylphosphonium Bromide **(15).** Bromo alcohol **14 (6.50** g, **33.5** mmol), triphenylphcaphine **(16.68 g, 63.60 mmol), and dry CH₃CN (1.34 mL, distilled from** CaH₂) were combined in a sealed tube and heated to 150 °C for 24 h. The solution was bulb-to-bulb distilled to remove $CH₃CN$ $(\approx 40 \degree C, 0.1 \text{ mmHg})$. The crude residue (24.79 g) was chromatographed on *50* **g** of **silica** gel to give **16 as** a gummy white solid. This was triturated with dry $Et_2O(2 \times 200 \text{ mL})$ and vacuum dried to give **15 as** a fie white powder: **15.25** g **(99.8%);** TLC *Rf* **(2%** $MeOH/CH₂Cl₂$ = 0.26 (streak); mp 54-57 °C. This material is best stored under vacuum with **Pa05** desiccant; 'H **NMR (6) 0.82** (t, **J** = **6.7** Hz, **3** H), **1.15-1.82** (m, **8** H), **2.4** (br **s,** dilution dependent, **0.5** H), **3.45-3.67** (m, **l** H), **3.75-4.15** (m, **2** H), **5.25** (br *8,* dilution dependent, **0.5** H), **7.65-8.00** (m, **15** H); 13C NMR **(6)** d: 13.7, 69.3, 69.5, 130.2, 130.4, 133.1, 133.2, 134.8; u: 19.2, 20.0, **22.2, 27.7, 29.8, 29.9, 36.4, 117.4, 118.7;** $MS (CH_4, CI; m/z) (M^+$ **= loss of Br⁻) 417 ((M + C₂H_a)⁺, 2), 405 ((M + C₂H₆)⁺, 11), 377 ((M** + H)+, **loo), 375 (21), 299 (971, 263 (91, 223 (14), 185 (11).**

(3R,10S)-3-Azido-7-pentadecen-10-ol (16). Wittig condensation was effected by a modification of the procedure of Mar- ~an0ff.l~ Thus, LiN(SiMe&, **(1.0** M in THF; **26.1 mL)** was added dropwise *to* phosphonium salt **15 (5.68** g, **12.4** mmol) suspended in 6 mL of dry THF at 0 °C. The cooling bath was removed, and the solution was stirred at **rt** for **30** min before being chilled to **-78** OC. While at **-78** OC aldehyde **12 (2.53** g, **14.9** mmol) in dry THF **(5.6 mL)** was added dropwise over **15** min. Immediately following aldehyde addition the *cooling* bath was allowed to warm to 0 °C $(\approx 2$ h) and then stirred an additional 15 min before being partitioned between saturated aqueous NH_4Cl and Et_2O . The aqueous phase was extracted twice with CH_2Cl_2 . The combined $\rm \tilde{CH_2Cl_2}$ extracts were dried (Na₂SO₄), concentrated, triturated twice with $Et₂O$, and then vacuum dried to give recovered phosphonium salt 15: 1.79 g (32%). The combined Et_2O and THF extracts were dried (Na₂SO₄), concentrated, and chromatographed to give recovered aldehyde **12 (0.668** g, **26%)** followed by the desired condensation product **16 as** a faintly yellow oil **(1.79 g, 54%, 61%,** and **79%,** respectively, based on consumed **12** and **16):** 'H NMR **(6) 0.92** (m, **6 H), 1.20-1.60** *(m,* **14** H), **1.70 (ba,** dilution dependent, **1** H), **1.98-2.30** (m, **4** H), **3.25** (bs, **1** H), **3.59** (bs, **1 H), 5.37-5.70** (m, **2 H); 'BC NMR (6)** (major geometric isomer of mixture) d: 14.0, 14.2, 62.9, 71.2, 126.9, 133.8; u: 19.5, 22.9, **26.1,28.1,32.5,34.0,36.7,36.7,40.9; 'BC NMR** (6) (additional **peaks** due to minor geometric isomer in mixture) d: 71.7, 126.2, 132.6; **u: 26.3,27.3,28.1,34.1,35.6,36.8; IR (an-') 3354,2966,2948,2905, 2856, 2087, 1545, 1459, 1250, 973; MS (CH₄, CI;** m/z **) 268 ((M +** H)+, **7), 240 (36), 222 (loo), 207 (441,182 (51,139 (6), 137 (6), 123 (22), 109 (81).**

(2R,6R)-(-)-2-((35)-3-Hydroxy-l-hepty1)-6-(1-propyl) piperidine **(17).** Azide **16 (0.344** g, **1.29** mmol) in o-dichlorobenzene **(2.6 mL)** was heated to **165** "C for **4** h in a sealed reactivial. The solvent was removed by bulb-to-bulb distillation (bath \approx 37 °C, 0.5 mmHg). The residual dark viscous crude concentrate in CH_2Cl_2 (7.0 mL) at -78 °C was treated with diisobutylaluminum hydride **(1.0** M in CH,Cl,, **6.43 mL)** dropwise via syringe over **15** min. After **30** min, the mixture was maintained at **-45 "C** for **1** h, at -20 °C for 1 h, and at 0 °C for 1 h. While still at 0 °C, the mixture was diluted with EhO **(20** mL) and treated with solid NaF **(1.05** g, **25.7** mmol), followed by the cautious dropwise addition of H₂O (0.35 mL, 19 mmol). After being stirred for 15 min, the reaulting slurry was filtered through a **short** pad of Celite that was subsequently washed with 200 mL of 10% Et₂NH/Et₂O. The combined filtrate and washings were dried (Na₂SO₄), concentrated, and chromatographed to give the cis-dialkylpiperidine **17 as** a yellow crystalline solid: 0.183 g (59%) ; TLC $R_f (10\% \text{ Et}_2\text{NH}/)$ petroleum ether) = 0.64 ; mp $57-58$ °C. Bulb-to-bulb distillation of 0.074 g of this mixture $(\approx 120$ °C, 0.5 mmHg) gave a white crystalline solid: 0.067 g $(54\%$ from 16); $[\alpha]_D - 6.6^{\circ}$ $(c \ 0.95, \text{EtOH})$; 'H NMR **(6) 0.91** (m, **6** H), **1.20-1.48** (m, **14 H), 1.48-1.87** (m, **9** H), 2.44-2.57 (m, 1 H), 2.57-2.68 (m, 1 H); ¹³C NMR (δ) d: 14.1, **14.2,56.2,56.7,71.3;** u: **19.2,22.9,24.7,28.3,31.5,32.2,33.3,34.2, 37.4,39.5; IR (mi1) 3189,2956,2931,2863,1735,1466,1455,1377, 1331, 1258, 1129, 1093, 1051, 901; MS** (m/z) **241** $(M^+, 2)$, **240** (3), **222 (3), 198 (61), 180 (34), 166 (8), 152 (3), 126 (loo), 112 (6).** *Anal* Calcd for C₁₅H₃₁NO: C, 74.63; H, 12.98. Found: C, 74.62; H, 12.59.

Further elution gave the tram-dialkylpiperidine **as** a dark viscous ϕ il: 0.012 g $(3.8\%);$ TLC $R_f(10\% \text{ Et}_2\text{NH}/\text{petroleum ether}) = 0.41;$ 'H NMR **(6) 0.90** (m, **6** HI, **1.10-1.55** (m, **14** H), **1.55-1.95** (m, **5** H), **2.49-2.65** (m, **1** H), **2.762.97** (m, **2 H), 3.00-3.55** (br **s,** dilution dependent, 2 H), 3.59-3.76 (m, 1 H); ¹³C NMR (δ) d: 14.2, 14.2, **36.6,60.3,69.3; u: 19.7,22.9,24.7,28.2,34.0,37.7,38.0,39.8,42.8, 51.5; IR (ai') 3300,2960,2937,2862,2811,1468,1446,1377,1135; MS** *(m/z)* **241** (M+, **2), 240 (l), 212 (2), 198 (loo), 180 (24), 166 (4), 140 (E), 126 (4), 112 (16).**

(R,ZZ,R)-(-)-Indofizidine 223AB (4). Dehydrative cyclization was accomplished using the method of Orahovats.¹³ Thus, Et_aN **(0.4 mL)** were added to **a stirred** mixture of cis-piperidine **17 (0.109** g, **0.450** mmol) and triphenylphosphine **(0.153** g, **0.585** mmol) at 0 OC. After *5* min the cooling bath was removed. After **14** h the mixture was chromatographed directly (eluting with **110** mL of NH₄OH/Et₂O/pentane in a ratio of 1/12/87) to give indolizidine **223AB 4** as a yellow oil: **0.0849** g **(85%);** TLC *Rf* **(10%** $Et_2NH/petroleum ether) = 0.54$; $[\alpha]_D -99^\circ$ (c 0.96, *n*-pentane). Bulb-to-bulb distillation of 0.0283 $g \approx 70 °C$, 0.5 mmHg) gave a clear oil: 0.0251 g $(76\%$ from 17); $[\alpha]_D - 102^{\circ}$ (c 1.1, *n*-hexane) (0.082 mL, 0.58 mmol), CCl₄ (0.056 mL, 0.58 mmol), and CH₃CN

(lit.S *[a]D* **-101O** *(c* **2.3,** n-hexane)); 'H NMR (6) **0.87-0.98** (m, **6** H), **0.98-1.07** (m, **4** H), **1.07-1.38** (m, **6** H), **1.38-1.56** (m, **4** H), **1.56-1.98** (m, **6** H), **2.28-2.48** (m, **2** H), **3.27-3.34** (t, J ⁼**7.4** Hz, **1** H); ¹³C NMR (δ) d: 14.3, 14.7, 56.8, 58.7, 59.2; u: 19.1, 23.1, **24.8, 25.2, 26.5, 29.3, 30.2, 31.1, 32.5, 36.0; IR** (cm-') **2959,2931, 2861,2798,1581, 1553,1455,1384,1342,1236,1096,1004; MS** *(m/z)* **223 (M+, 2), 222 (3), 181 (12), 180 (loo), 178 (3), 167 (12), 166 (94), 164 (2), 152 (31,150 (31,124 (lo), 122 (a), 108 (18). These** data (¹H, ¹³C NMR, TLC) were identical with those recorded by us for natural material.

Acknowledgment. We thank CRDEC/Aberdeen and the Center for Catalytic Science and Technology of the University of Delaware for support of this work.

Supplementary Material Available: 13C spectra for compounds **4,6,9-17 (21** pages). Thie material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of this journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Zirconium-Mediated Reactions of Alkylpyrazines and Alkynes. Synthesis of Highly Substituted Alkylpyrazines

Anil S. Guram and Richard F. Jordan*

Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242

Received May 28, 1992

Sequential one-pot addition of alkylpyrazines, alkynes, and a proton source to a solution of $\text{Cp}_2\text{Zr}(\text{Me})(\text{THF})^+$ **(1)** in CHzClz at room temperature affords **(E!)-alkenyl-substituted** alkylpyrazines **2-10** in excellent yields. The regio- and stereoselectively observed in these reactions is similar to those observed previously for related early transition metal-mediated reactions and is ascribed to steric and Si electronic effects. Conventional synthetic organic manipulation of the alkenylpyrazines provides easy access to a variety of highly substituted alkylpyrazines including tri- and tetrasubstituted alkylpyrazinee **13, 17-20,** dibromoalkylpyrazine **14,** bromoalkylpyrazine **15,** and epoxyalkylpyrazine **16.**

Introduction

Alkylpyrazines have been recognized as flavor components in foods,¹ as pheromones in various insect species,² and as versatile synthetic intermediates.³ In the past, condensation reactions^{3a} and nucleophilic addition of alkyllithium reagents⁴ were commonly employed for the preparation of alkylpyrazinea. These methods suffer from poor yields resulting from incomplete conversions/side reactions and exhibit poor regioselectivity in the preparation of unsymmetrically substituted pyrazines. More recently, synthetic methods based on electrocyclization reactions⁵ and transition metal-mediated reactions⁶ have been described. Herein we describe a facile zirconiummediated reaction of alkylpyrazines and alkynes which offers a simple route to alkenyl-substituted alkylpyrazines. Conventional synthetic organic manipulations of these alkenylpyrazines provide access to a variety of highly substituted alkylpyrazines.

As a part of our ongoing efforts to develop synthetic organic applications of cationic $Cp_2Zr(R)(L)^+$ complexes,^{7,8} we recently reported that complex $\text{Cp}_2\text{Zr}(\text{CH}_3)(\text{THF})^+$ (1) reacts with pyridines under mild conditions via C-H ac-

⁽¹⁾ (a) Maga, J. A. Pyrazines in Foods. **An** Update. In *CRC Critical Reviews In Food Science And Nutrition;* Furia, T. E., Ed.; CRC: Boca Raton, FL, 1982; Vol. 16, pp 1–48. (b) Borphy, J. J.; Cavill, G. W. K.
Heterocycles 1980, 14, 477. (c) Seeman, J. I.; Ennis, D. M.; Secor, H. V.;
Clawson, L.; Palen, J. Chem. Senses 1989, 14, 395 and references therein.
(2

Roller, P. P.; Don, A. W. Tetrahedron 1988, 44, 5045. (b) Tecle, B.; Sun, C. M.; Borphy, J. J.; Toia, R. F. J. Chem. Ecol. 1987, 13, 1811. (c) Wheeler, J. W.; Avery, J.; Olubajo, O.; Shamim, M. T.; Storm, C. B. Tetrahedron

^{(3) (}a) Barlin, G. B. The Chemistry of Heterocyclic Compounds;
Wiley: New York, 1982; Vol. 41. (b) Hasegawa, M.; Katsumata, T.; Ito,
Y.; Saigo, K.; Iitaka, Y. Macromolecules 1988, 21, 3134.

⁽⁴⁾ Klein, B.; Spoerri, P. E. *J. Am. Chem. SOC.* **1951, 73, 2949.** (b) Klein, B.; Spoerri, P. E. *J. Am. Chem. SOC.* **1960, 72, 1844.** (c) Wheeler, Neun, B.; Spoern, F. E. J. Am. Chem. 30C. 1990, 72, 1944. (c) wheeler,
J. W.; Blum, M. S. Science 1973, 182, 501. (d) Rizzi, G. P. J. Org. Chem.
1968, 33, 1333. (e) Schwaiger, W.; Ward, J. P. Recl. Trav. Chim. Pays-Bas
197 reactions have been employed for elaboration of alkyl side chains of py-razines, see: **(f)** Wheeler, J. W.; Avery, J.; Olubajo, 0.; Shamim, M. T.; Storm, C. B.; Duffield, R. M. *Tetrahedron* **1982,38,1939.**

⁽⁵⁾ Buchi, G.; Galindo, J. J. Org. Chem. 1991, 56, 2605.

(6) (a) Chen, W.; Zhang, J.; Hu, M.; Wang, X. Synthesis 1990, 701. (b)

Akita, Y.; Noguchi, T.; Sugimoto, M.; Akihiro, O. J. Heterocycl. Chem.

1986, 23, 1481 and r

⁽⁷⁾ For general chemistry of Cp&(R)(L)+ and related complexes, see: (a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. *J. Am. Chem. SOC.* **1986, 108, 1718.** (b) Jordan, R. F.; Bajgur, C. S.; Willet, R.; Scott, B. J. *Am. Chem. SOC.* **1986,108,7410.** (c) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 109, 4111. (d)
Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organo-
metallics 1987, 6, 1041. (e) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. C. Organometallics 1989, 8, 2892. (f) Jordan, R. F.;
Bradley, P. K.; Baenziger, N. C.; LaPointe, R. E. J. Am. Chem. Soc. 1990,
112, 1289. (g) Jordan, R. F.; LaPointe, R. E.; Baenziger, N. C.; Hinch,
G. D.

F.; Hinch, G. D. Organometallics 1991, 10, 1268.

(8) For reviews, see: (a) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325. (b) Jordan, R. F.; Bradley, P. K.; LaPointe, R. E.; Taylor, D. F.
 New J. Chem. 1990, 14, 505